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1 Introduction

High fidelity 3D human face reconstruction from single image has long been an interested topic studied by
both the computer graphics community and the computer vision researchers. Traditionally, the 3DMM [2, 1]
face models has been adopted by most of the works to perform the face reconstruction. As a Principle Com-
ponent Analysis based method, 3DMM face models assumes that human face could be linearly represented
by low dimensional data combined with the corresponding learned face basis, which could be mathematically
formulated as

p = p̄+Aidαid +Aexpαexp (1)

b = b̄+Aalbαalb (2)

where p denotes the shape of the face mesh, which is further separated to the average shape p̄ under neutral
expression, the offset basis corresponds to the identity of the subject Aid and the offset basis corresponds
to different expression of the subject Aexp. Similarly, b represents the texture of the face, which usually
denotes as the rgb color on each vertices. Aalb corresponds to the offset basis of face texture differences
caused by different subject identity. αid, αexp and αalb are the linear coefficient vectors that characterize
the 3D face models for different subjects. Within this line of work, multiple different face models were
learned from multiple collected face scan datasets. To name a few, the Basel Face Model(BFM) [8] and the
FaceWarehouse [3].

However, those methods face a common issue: representing the high dimensional human faces in lower
dimension inevitably lose the high frequency information of human faces, which results in an over-smoothed
reconstructed human faces. Several works that published recently tries to address this issues by directly
learning an non-linear face models[10, 11, 12, 13, 14]. Specifically, [10] directly learns a face model from
scratch based on the large amount of videos in an unsupervised manner. In [12], instead of learning the
color on the each vertex, the author innovatively proposed to learn the corresponding 2D texture map while
in [14], the focus is on learning a depth map that could faithfully reflects the fine details on human face
(including the winkles, moustache, eyebrows, etc).

In this project, we’d like to borrow the best from [12] and [14], where in addition to the base face model
reconstruction using the 3DMM face, we use a 2D texture map to represent the textures of human face as
well as a 2D shape offset map to add the shape details of human faces.

2 Methodology

In general, our methods contains an encoder network to map the human faces from the 2D images to the lower
dimensional 3DMM identity, expression and albedo coefficients space. In addition to the 3DMM parameters,
this model also regress the scale/rotation/translation parameters to perform global transformations and
the lighting parameters. We assume the face of human beings as a Lambertian surface, which could be
parameterized with the following equation:

L(bi, ni|γ) = bi

B2∑
b=1

γkφk(ni) (3)
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Figure 1: Pipeline for 3D human face reconstruction with offset texture map and displacement map learning.
In the upper branch, we show the base face reconstruction module, which employs the 3DMM face model.
For the lower branch, we additionally proposed to learn the offset texture map and displacement to add
additional details to the face model

Where L is the final color of the face model, ni and bi are the normal and albedo at vertex i. B
corresponds to the order of spherical harmonics and γ is the corresponding coefficient. φ is the spherical
harmonic function, which takes a surface normal as the input. In our experiments, we use third order
spherical harmonics lighting function, which corresponds to 9 lighting parameters per band and 27 lighting
parameters in total.

The predicted αid, αexp and αalbedo is then used to reconstruct the face mesh following the equation 1
and equation 2. After transforming the reconstructed mesh with the predicted transform parameter(scale,
rotation and translation), we employed a differentiable renderer [7] to rasterize the image. The reconstruct
image, along with the original input image, are concatenated and then fed into a double-head UNet [9] was
designed to predict the surface offset map and the texture map, which is applied on the rough estimation from
the 3DMM models to reconstruct the face in the input images faithfully and vividly. The entire pipeline is
illustrated in Figure 1. We refer to the upper branch, where we perform reconstruction based on the 3DMM
face model as the base branch, and the lower branch, where we introduced the residual texture map and
displacement map, as the augmented branch.

2.1 Base branch: Model based 3D human face reconstruction

In the base branch, we employed the ResNet50 [6] as the model to map the input 2D images to the 3DMM
coefficients. We reconstruct the shape of face follow equation 1 and the albedo follow equation 2. After
performing model transformation, We compute the face normal first and then compute the vertex normal
based on the trianglation between vertices. The vertex normal is then used in equation 3 to compute the
color after adding lighting.

The final mesh is then rendered with a differentiable renderer (SoftRasterizer[7]). We use the differ-
entiable renderer instead of an ordinary rasterization renderer since traditional rasterization process is a
non-differentiable process: for example, consider a moving object that is gradually occluded by another
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Figure 2: 3D face reconstruction result from the base branch.

static object that lies in the front, the change from ”visible” to ”non visible” is abrupt, which blocks the
gradient to back propagated to the base neural net. For rendering, we assume perspective projection with
a FoV of 30◦. The rendered image is compared with the original input image on the rendered part. We
introduced 2 supervision here: the pixel-wise distance, the landmark distance and face recognition model
feature loss.

Lpixel =
1

n

n∑
k=1

∥∥∥Î � I − Î∥∥∥2 (4)

Llandmark =
1

n

n∑
k=1

1

68

68∑
i=1

‖y − ŷ‖1 (5)

Lrecog =
1

n

n∑
k=1

∥∥∥F (Î � I)− F (ŷ)
∥∥∥
1

(6)

where Î indicates the reconstructed image using predicted coefficients and I is the ground truth image.
� indicates the element-wise multiplication. We masked out the face region to avoid the loss incurred by the
background difference. In 5, ŷ indicates landmark extracted from the face mesh and y is the pseudo-ground
truth for the 68 landmarks on human face, which we obtained by running [15]. For the recognition loss6,
F () corresponds to the face recognition model loss. The overall loss we used here the weighted combination
of pixel loss, landmark loss and recognition loss:

Lbase = Lpixel + Llandmark + 20Lrecog (7)

We set the learning rate to 3e − 5 and train the base ResNet50 model for 20 epochs on CACD2000
dataset[4], which contains more than 160,000 images of 2,000 celebrities with age ranging from 16 to 62. We
random select 70% of them for training and 15% for validation and test respectively. We initialize the model
with the pre-trained model on ImageNet[5] for object classification and each epoch take around 7 hours. The
results are visualized in Figure 2

2.2 Augmented branch: 3D human face reconstruction with

After finishing the base branch training, we fix the ResNet50 model to train the second model to learn the
offset texture map and the displacement map. We design the texture map and displacemap as 2D images
with the spatial resolution of 224× 224.

We employed the U-Net[9] structure for the texture map and the displacement generation as U-Net has
been largely adopted for image to image generation task and show superior results compared to the other
architectures. U-Net contains an encoder part and decoder part, which perform the information compression
and generation respectively. Here, we designed a double head U-Net structure, meaning that in the encoder
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Figure 3: Degenerated results when training the augmented branch using pixel loss and landmark loss only.

part, the texture map and displacement map share the model. We split the texture map branch and the
displacement branch after the 2nd up-sampling layer. At the output side, we generate the texture offset map
and the displacement map, which each has 3 channels.

We use bi-linear sampling to obtain the offset for each vertex on the 3DMM model instead of hyperbolic
sampling as the denominator term in hyperbolic sampling makes the training much more unstable in our
preliminary study (fitting the U-Net on a subset of the training set). We conjecture the reason is that
3DMM model resides in the clip coordinates, which has relatively small depth value and the denominator
term therefore magnifies the gradient.

Directly training the U-Net using the loss in 4 and 5 is sub-optimal as it often generates degenerated
results, which we visualize a couple of them in Figure 3

Here, we proposed to employ a few more loss to better regularize the predicted texture offset map and
the displacement map. We assume that the offset map should be small and symmetry for most of human
faces, therefore L2 loss and symmetric loss is imposed:

L2 =
1

n

n∑
k=1

‖M‖2 (8)

Lsym =
1

n

n∑
k=1

‖M − flip(M)‖2 (9)

where M is the predicted texture offset map or the displacement map. In order to further ensure a smooth
reconstruction of the shape and the albedo after adding the sample offset from the prediction results, we
apply laplacian filter on the mesh model and also minimize the filtered results:

Lsmooth shape =
1

nL

n∑
k=1

L∑
i=1

1

e(i)

e(i)∑
j=1

‖pi − pj‖2 (10)

Lsmooth albedo =
1

nL

n∑
k=1

L∑
i=1

1

e(i)

e(i)∑
j=1

‖bi − bj‖2 (11)

where n corresponds to number of samples in a batch and L is the number of vertices in the face model.
e(i) is the set of the neighbour vertices of vertex i. The overall loss is the weighted summation of them:

Lbase = Lpixel + Llandmark + 20Lrecog + (1e− 4)(L2 + Lsym) + 0.08Lsmooth shape + 0.1Lsmooth albedo (12)

We were only able to train the model for 7 epochs since each epoch takes around 9 hours and we only
have limited GPU resources. The final results are visualized in Figure 4.
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Figure 4: From top to bottom: the visualization of the reconstructed human face, the predicted texture
offset map and the predicted displacement map
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Figure 5: Compared the reconstructed mesh with additional texture offset map and displacement map.
Mainly the skin color changes.

2.3 Comparison

Because the limited time we have, we could try any more hyper-parameter settings or training the augmented
branch for any more epochs. Based on the current results, the predicted displacement map is almost zero
everywhere and mainly modify the lower jaw part. For the texture offset map, it mainly modify the skin
color since the 3DMM basis could not perform a well construction for people with dark skin. We visualize
the result in Figure 5
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